Тригонометрические, показательные и логарифмические уравнения и неравенства. Севрюков П.Ф., Смоляков А.Н. |
Тригонометрические, показательные и логарифмические уравнения и неравенства. Севрюков П.Ф., Смоляков А.Н.
ОГЛАВЛЕНИЕ I. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 1. Простейшие тригонометрические уравнения 5
2. Тригонометрические уравнения, содержащие тригонометрические функции одинакового аргумента 9
3. Однородные тригонометрические уравнения и уравнения, приводящиеся к ним 14
4. Уравнения вида a sin x + b cos х = с 17
5. Уравнения, рациональные относительно выражений sin х ± cos х и sin x cos x 22
6. Тождественные преобразования в решении стандартных тригонометрических уравнений 28
7. Тригонометрические функции тройного аргумента 36
8. О форме записи множества решений 40
9. Отбор корней в дробно-рациональных уравнениях 42
10. О сужении области определения уравнения в процессе преобразований 46
11. Решение тригонометрических уравнений возведением обеих частей уравнения в квадрат 54
12. Методы искусственных преобразований 61
13. Решение тригонометрических уравнений методом экстремальных значений 73
14. Решение тригонометрических уравнений с помощью скалярного произведения векторов 78
15. О решении уравнений вида sin x = sin у, cos x = cos у, tg х = tg у 80
16. Уравнения с ограничениями 82
17. Системы тригонометрических уравнений 88
18. Тригонометрические неравенства 97
19. Тригонометрические задачи со сложным аргументом 105
20. Уравнения, содержащие обратные тригонометрические функции 115
21. Решение задач с параметрами 124
22. Решение уравнений, содержащих логарифмические и тригонометрические функции 145
23. Применение тригонометрических подстановок в алгебраических уравнениях 148
II. ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 1. Решение уравнений вида с№ = 1 172
2. Решение уравнений вида (q(x)Yx) =1 173
3. Решение уравнений вида е^х) = Мх) 175
4. Решение уравнений вида cflx) = а^х) 176
5. Решение уравнений вида а0т"х + с +а1тпх + с + ... + аптпх + с = F 181
6. Решение уравнений вида та*™ + па/м + р = 0 184
7. Применение подстановок при решении некоторых показательных уравнений 190
8. Решение уравнений вида т а2Лх) + п • ^ №х) +q- Ь2Лх) = 0 . . . . 193
9. Нестандартные приемы решения уравнений 197
10. Решение систем показательных уравнений 200
11. Определение и свойства показательной функции. Решение показательных неравенств 206
12. Решение уравнений с применением свойств показательной функции 222
13. Решение показательных уравнений и неравенств с параметрами 225
III. ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА 1. Определение логарифма 236
2. Теоремы о логарифмах 241
3. Формула перехода от логарифма по одному основанию к логарифму по другому основанию 247
4. Несколько полезных логарифмических тождеств 253
5. Решение уравнений, основанное на определении логарифма 257
6. Уравнения, решаемые логарифмированием 262
7. Логарифмические уравнения, решаемые потенцированием 264
8. Решение уравнений вида A\ogag(x)) = 0, где Дх) — некоторая функция 270
9. Решение логарифмических уравнений с помощью формул перехода от одного основания логарифма к другому 275
10. Уравнения, содержащие неизвестные в основаниях логарифмов и показателях степеней 281
10.1. Рассмотрим уравнение (Лх))*х) =1 281
10.2. Рассмотрим уравнение (Л*))'iw = (J{x))g2{x) 283
10.3. Уравнения, содержащие логарифм в показателе степени 284
10.4. Решение уравнений вида (J{x)Y{x) =(g(x))^x) 285
11. Решение уравнений, основанное на применении некоторых логарифмических тождеств 288
12. Системы логарифмических уравнений 294
13. Логарифмическая функция и ее свойства 305
14. Стандартные методы решения логарифмических неравенств 316
15. Решение логарифмических неравенств методом интервалов 323
16. Об одном способе решения логарифмических неравенств 329
17. О некоторых свойствах переменных, входящих в логарифмические неравенства 332
18. Решение логарифмических уравнений с использованием свойств функций 336
19. Несколько уравнений и неравенств с параметрами 338
20. Трансцендентные уравнения 344
|